HUMAN FACTORS, 1986, 28(4), 421-438

Statistical Dependency in Visual Scanning

STEPHEN R. ELLIS,! NASA—Ames Research Center, Moffett Field, California, and Department
of Physiological Optics, University of California, Berkeley, and LAWRENCE STARK,
Department of Physiological Optics, University of California, Berkeley

A method to identify statistical dependencies in the positions of eye fixations is developed
and applied to eye movement data from subjects who viewed dynamic displays of air traffic
and judged future relative position of aircraft. Analysis of approximately 23 000 fixations on
points of interest on the display identified statistical dependencies in scanning that were
independent of the physical placement of the points of interest. Identification of these de-
pendencies is inconsistent with random-sampling-based theories used to model visual

search and information seeking.

INTRODUCTION

The distribution of eye fixations on stimuli
in the visual field is usually not uniform, and
the times spent viewing each of their compo-
nent features are usually not equal (Buswell,
1935; Fisher, Monty and Senders, 1981; Fitts,
Jones, and Milton, 1950; Papin, Naureils, and
Santucci, 1980; Senders, Fisher, and Monty,
1978; Stark and Ellis, 1981; Yarbus, 1967).
Certain features are often more “popular”
than others. The resulting distribution of fix-
ations may be expressed as a zero-order
probability vector where each element is the
probability of viewing a particular feature.
When the scanning among the features is
otherwise random, this vector constrains the
transition pattern. One aspect of this con-
straint is that transitions between features
with high probability of viewing occur with
corresponding high frequency (Senders,
1966; Senders, Grignetti, and Smallwood,

! Requests for reprints should be sent to Stephen R.
Ellis, NASA—-Ames Research Center, MS 239-3, Moffett
Field, CA 94035

1966). Thus, a high frequency of transition it-
self is not a necessary indication of a statis-
tical association of fixations on pairs of fea-
tures (Carpenter and Just, 1978). 7 statistical
technique described in the Appendix shows-
how to identify genuine statistical depen-
dencies in transition patterns.

Somewhat surprisingly, oculomotor infor-
mation seeking during a variety of tasks such
as visual search (Engle, 1977; Inditsky and
Bodmann, 1980; Kraiss and Knaeuper, 1983;
Krendel and Wodinsky, 1960), instrument
monitoring (Senders, 1966; Weir and Klein,
1970; Wewerinke, 1981), computer-menu
scanning (Card, 1983), and during solution of
seriation problems (Groner and Groner,
1982), may be modeled as random or strati-
fied random sampling with replacement.
This apparent randomness in visual scanning
is especially surprising in view of evidence
from other experiments, which shows that
subsequent fixations may be directed by in-
formation acquired at the current fixation
(Kapoula, 1983; Rayner and Pollatsek, 1981;
Vaaughn, 1982). If the underlying cognitive
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processes directing eye movements during
information seeking can be made periodic
and statistically stationary, evidence of that
direction ought to be evident as statistical
dependencies in the observers’ scanning
during free viewing.

The following experiment was designed to
exhibit these dependencies in an informa-
tion-seeking task. Periodicity and station-
arity of the processing of visual information
in this task were encouraged respectively by
periodicity in presentation and by extensive
training of the subjects. We endeavored to
measure the extent to which our subjects’
scanning eye movements could be described
as random, and thereby to infer the extent to
which their control may be autonomous from
repetitive ongoing cognitive processing. If
the decision of where to fixate next were con-
trolled by repetitive open-loop information-
gathering strategies such as left-right scan as
in reading (Bouma and de Voogd, 1974;
Kolers, 1976), or by closed-loop strategies in
which the decision is based on information
gathered in the previous fixation (Rayner and
Pollatsek, 1981), then scanning among points
of interest should exhibit statistical depen-
dencies and should not be truly random.

METHODS

In this experiment, we examine the spatio-
temporal structure of scanning eye move-
ments made by airline pilots viewing a
cockpit display of traffic information or CDTI
(previously reported by Palmer, Jago, and
Dubord, 1981; also see Verstynen, 1980).

Display Conditions

A series of 24 track-up, moving map CDTI
displays was generated on a calligraphic
computer graphics system (Evans and Suth-
erland PS 1) previously described by Palmer
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and his associates (Palmer, Jago, Baty, and
O’Conner, 1980; Palmer et al., 1981). Each
display depicted an encounter between two
aircraft, the pilot’s own ship and an intruder,
both flying at the same altitude. An example
of the display is provided in Figure 1. The
boldface labels did not appear on the display
when viewed by the subjects. Each aircraft
had 32 s of previously tracked positions dis-
played as eight dots of trail, one for each up-
date, and had a 32-s predictor which indi-
cated its future position if it did not ma-
neuver. The miss distances for all encounters
were set at 1846 meters (6000 feet) and the
map position of ownship was updated every
0.1 s. The intruder’s position was updated
every 4 s. Equal numbers of intruders were
randomly determined to pass in front of and
behind ownship. Map range from ownship to
the top of the display was set at 18.5 km (10
nautical miles). In addition to ownship and
the intruder, the display contained two geo-
graphical locations, LOM and PEPS], and a
route shown as a solid line. All trajectories
crossed near LOM. Each encounter consisted
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Figure 1. Representative encounter between ownship
and an intruder approaching from left.
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of seven 4-s updates simulating radar-de-
rived data: two updates (8 s) before the in-
truder appeared, and five updates (20 s) af-
terwards. To avoid the mixing of different
scan strategies, analysis was restricted to the
final five updates during which the intruder
was visible. The first two updates of the dis-
play did not provide sufficient data for a sep-
arate transition analysis of this phase of the
experiment. .

The display was blanked in such a way
that, after the last update, there remained 44
s before the flight paths of the aircraft
crossed. This blanking prevented the aircraft
symbols from ever overlapping. After the dis-
play was blanked, the subject was prompted
to decide if the intruder would pass in front
of or behind ownship. The subject responded
by pressing a two-way switch, was shown the
correct response by text on the screen, and
then proceeded to the next encounter. The
particular encounters used provided a task of
moderate difficulty as compared to those
used in previous experiments (Palmer et al.,
1980).

The encounters represented both straight
and turning horizontal encounter geome-
tries. Intruders approached randomly but
equally often from the left and right of own-
ship. There were four different types of en-
counters, each producing different target
movements on the display: neither aircraft
turning, intruder only turning, ownship only
turning, and both aircraft turning. Turn rate
for all aircraft was constant at 1.5 deg/s. The
order of presentation of the four types of
target movement, 6 distinct encounters per
type, was randomized within blocks of 24 en-
counters of the same predictor type. Each
subject viewed two blocks, for a total of 48
distinct encounters. Significantly, the
turning of ownship caused the other parts of
the map to revolve around it.

The resulting set of encounters provided a
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wide variety of encounter geometries in
terms of display coordinates. This variety
was also intended to discourage stereotyped
scanning, such as a left-to-right reading pat-
tern, from masking a scanning strategy based
on information present on the display. The
variety was additionally intended to ensure
that any scanning strategies were not conse-
quences of the particular placement or move-
ment of the aircraft and ground symbols on
the display. Thus, any regularities identified
in the scanning could be attributed to the in-
formation represented by the display ele-
ments and not to regularities in their place-
ment on the display.

Videotapes of the encounters were made
for off-line presentation. They were time-
marked with signals on the audio channels,
in order to establish synchrony between the
records of eye movements taken while the
subjects made in-front/behind judgments.
The tapes were played back on a TV monitor
so that the display subtended a rectangle of
12 x 10 deg with average lumizance of about
1.0 cd/m?. The outlines of the symbols had a
luminance of about 3.0 cd/m?. Complete air-
craft symbols on the display subtended a vi-
sual angle of 3.5 deg. The monitor was
viewed from a distance of 75 cm by the sub-
ject, who sat in the chair of a simplified part-
task cockpit simulator. The chair had a high
back and was fitted with a chin rest sus-
pended from above to restrict head move-
ment. Subjects signaled the in-front and be-
hind judgments with a toggle switch. A sepa-
rate push-button switch was used during
calibration of the eye monitor to signal fixa-
tion of a calibration marker. Masking noise
was provided by the sound of several motors
associated with the eye tracker and PDP-12
computer used to record the data.

Direction of gaze data were recorded with
a Gulf and Western 1994 pupilometer-based

television eye monitor, which was calibrated
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by recording fixations at 25 reference points
ina 5 x 5 array (14 deg/side), centered in the
subject’s forward field of view. The eye mon-
itor performed within specification, pro-
viding at least 1 deg overall accuracy in mea-
suring eye position. The eye monitor output
(x,y direction of gaze and pupil diameter), the
subjects’ signals, and the time markers from
the videotape were all digitally recorded. The
sample rate was 30 hz, set by the video frame
rate.

Subjects

Eight male airline pilots were subjects in
the experiment. All were either captains or
first officers with at least 6000 hours flying
experience. All had at least three hours expe-
rience in similar CDTI experiments requiring
in-front or behind judgments and had re-
corded better than average performance in
these studies.

Procedure

During an orientation session before each
experiment, the subject’s attention was di-
verted from the fact that his direction of gaze
was being recorded. He was told that the
purpose of the experiment was to determine
if pupillary changes could be used to predict
projected-flight-path judgments. Lengthy
briefing was unnecessary due to the subjects’
experience in similar experiments. The
meaning of all parts of the symbology was re-
viewed, however, and each subject was given
about 20 minutes practice making in-front/
behind judgments before his scanning pat-
terns were recorded.

This training and the subject selection pro-
cedure resulted in asymptotic, near-perfect
performance of the task, which provided
stable behavior for analysis. After the initial
practice, the eye monitor was adjusted to
track the left eye, and an initial full calibra-
tion was made. Interspersed between data
gathered during the encounters were reset
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fixations, taken by having the subjecttefixate
a position corresponding to the center of the
calibration grid. A reset calibration was
taken when a drift of more than 1.0 deg was
observed on the eye tracker’s CRT display of
eye position.

Data Processing

After the experiment, the data were trans-
ferred to a PDP-11/70 computer to be linear-
ized according to a piecewise-linear approxi-
mation derived from the calibration fixa-
tions. Fixation locations were determined in
a manner similar to that of Karsh and Brei-
tenbach (1983), thereby identifying fixations
representing at least 90 ms in duration.

After identifying the positions, durations,
and onset times of all fixations, the data were
correlated with records of the positions of all
points of interest as a function of time after
the beginning of each encounter. Thus, each
fixation could be assigned to one of eight pos-
sible points of interest: the end of ownship'’s
trail (OST), ownship present position (OS),
the end of ownship’s predictor (OSP), the end
of intruder’s trail (IT), intruder’s current po-
sition (I), the end of intruder’s predictor (IP),
location PEPSI (PEP), and location LOM
(LOM). All fixations not within 1 deg of any of
these points of interest were assigned to a
category called BIN. The data were then tab-
ulated to determine the overall distribution
of fixation durations as well as separate dis-
tributions for each point of interest. Per-
centage of time spent at each point of interest
was determined.

RESULTS
Distribution of Fixations

The individual distributions of fixation du-
rations had the positive skew—1.84 to
2.64—usually found in distributions of fixa-
tion duration. The means ranged through a
region somewhat longer than that usually
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Figure 2. Means across subjects of percentage of time spent viewing each point of interest (+/— 1 standard

error).

found for scanning of graphical stimuli—341
to 554 ms—and standard deviations ranged
from 282 to 498 ms. All pilots distributed
their fixations across the eight points of in-
terest in a consistent manner, which in some
respects supports earlier findings concerning
the differential usefulness of the predictor
lines and history dots attached to each
symbol (Palmer et al., 1980). For example,
the history dots displayed with all aircraft
were almost never fixated. This observation
is consistent with findings of previous experi-
ments, in which the presence of these dots
did not improve the accuracy of the front/be-
hind judgments.

The higher proportion of viewing time on
LOM, compared with PEPSI, probably oc-
curred because LOM was close to the point of
intersection of the flight paths for all the en-
counters. With the exception of LOM, the
percentage of time each point of interest was
viewed was approximately constant during
the course of the encounter (within 8%). The
time spent viewing LOM increased about
40% as a function of time after the appear-

ance of the intruder; that is, as a function of
each 4-s update period, F(1,7) = 15.02, p <
0.01. This increase in viewing of LOM corre-
sponded to a decrease of about 30% in un-
classified fixations, which were generally at
points intermediate between the ends of the
predictors on the aircraft.

Analysis of Transition Frequencies

We have examined the possibility that each
subject’s probability of viewing each point of
interest can predict the frequency of transi-
tions among them. To do so, we calculated
expected frequencies of transitions (as de-
scribed in the Appendix), and compared
them with observed transition frequencies.
This comparison was made on a subject-by-

- subject basis with a chi-square goodness-of-

fit test on the entire distribution of observed
and expected transitions. The method of
analysis is illustrated for one subject in Table
1, which contains a matrix of his observed
and expected first-order transition fre-
quencies.

The observed transitions were determined
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from eye movement data collected while the
subject viewed the 20-s periods of 48 different
traffic encounters. Corresponding to each ob-
served transition frequency, an expected
transition frequency was calculated on the
assumption of stratified random sampling
(Appendix Equations 1 and 2). Provided that
those cells with small expected frequencies—

for example, f,(i — j) < 5— are collapsed, the -

observed and expected frequencies furnish a
basis for calculating a chi-square goodness-
of-fit test for the entire transition matrix.
Several different methods of collapsing the
cells with small expected frequencies were
tried, and the results are insensitive to the
choice of methods.

The underlined entries in Table 1 mdlcate
which of the observed transitions were iden-
tified as sufficiently different from the ex-
pected values to be considered evidence for
statistical dependency in the scanning. The
main diagonal is undefined, since we are un-

TABLE 1
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able to observe a transition from a point of
interest to itself. Minor irregularities in the
pattern of transitions, such as exits from a
point of interest that seems never to have
been entered, are due to breaks in the se-
quence of eye movements when the eye
tracker lost track of the eye.

The number of degrees of freedom for the
goodness-of-fit test are n(n—2) — 1, where n
is the number of points of interest. Two de-
grees of freedom are lost for each point be-
cause of exclusion of the main diagonal, and
the fact that the number of visits to each
point must equal the number of exits from it.
In fact, because of breaks in recording the se-
quence of fixations, the number of visits to a
particular point of interest usually did not
exactly equal the number of exits from it.

As shown by the chi-square statistic at the
bottom of Table 1, there is statistically signif-
icant deviation between the overall observed
and expected transition patterns and, thus,

A Single Subject’s First-Order Transition Frequenc1es among. 8 Points of Interest (Corresponding Ex-

pected Frequencies in Parentheses) .

-
From OST oS OSP ? T / P LOM PEP
Ownship trail — 1 0 0 0 0 0 0
(OST) = ©) 0) ) (0) (0) (0) (0)
Ownship 0 — 11 1 3 6 6 5
(0s) () — 4) 0 4 () (6) 1)
Ownship predictor 0 12 _ 0 8 14 30 5
(OSP) ) (4) — &) (16) (30) (21) ()
Intruder trail 0 0 0 —_ 6 1 2 0
(Im (©) ) (2 — 2 @) ) (0)
Intruder 0 2 9 6 — 47 12 2
0] ) 4 (16) @ — (29 (23) 3)
Intruder predictor 0 4 21 0 54 — 40 4
(IP) ) 8 (30) 3 (30) - (43) (6)
Waypoint LOM 0 2 10 0 23 47 — 5
(LOM) (0) (6) (24) @ (23) (43) — (5)
Waypoint PEPSI 0 5 7 1 3 7 7 —
(PEP) (0) (1) @) ©) ®) (6) (%) =

Total number of transitions = 429
Chi-square = 178.8, df = 47, p < 0.005
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there is evidence that something other than
stratified random sampling is taking place
during the scanning. Chi-square tests for
seven of the eight subjects show highly reli-
able differences between the observed and
expected transition frequencies (Table 2).

The chi-square values represent goodness-
of-fit tests of stratified random sampling as a
model of the scanning data. As shown by the
significance levels in Column 3 of Table 2,
this model can be rejected as a description of
the scanning for seven of the eight subjects.
However, as shown by the correlations be-
tween the observed frequencies of transition
and those expected from stratified random
sampling, the stratified random sampling
model accounts for a good deal of the pattern
of transitions. The correlations based on the
log transformed data are also shown. The last
two columns of Table 2 compare the statis-
tical dependency of the observed scanning
with that expected from stratified random
sampling, and show that the observed scan-
ning for all subjects is more statistically de-
pendent than would be expected from strati-
fied random sampling.

The one subject who did not show a reli-
able difference had a sparse transition matrix
with the fewest transitions on which to base
an estimate of the probability of a transition,
p( to j). His data were, in other respects,

TABLE 2
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however, qualitatively similar to those of the
other subjects.

For no subject, however, can the chi-square
test alone address either the magnitude or
the direction of the deviations from stratified
random sampling. Accordingly, in order to
assess the extent of the deviation, each sub-
ject’s expected transition frequencies were
regressed against his corresponding observed
frequencies (Tukey, 1977). In such a regres-
sion (Figure 3), a perfect prediction corre-
sponds to a linear regression with a slope of
1.0 and a correlation coefficient of 1.0. The
slopes of the regressions of all subjects are
quite close to the 1.0 (dashed line), and there
is a strong linear relation. Figure 3 collapses
this analysis across all subjects, resulting in
the superposition of many points at the lower
frequencies. Regressions were calculated sep-
arately for each subject and drawn through
the scatter plot. Three of the regression lines
are superimposed because of nearly identical
parameters. .

The strength of this relationship plotted in
Figure 3 is measured by two correlations be-
tween observed and expected frequencies,
shown for each subject (Table 2). The first, in
Column 5, is the Pearson product-moment
correlation, corresponding to the regression
shown in Figure 3; that is, the correlation be-
tween the observed frequency and that ex-

Results of Analyses of Each Subject’s Entire First-Order Transition Matrix

Chi-square

H H

c c
Chi-square statistical Number of Corr (df) observed expected
Subjects df = 47 significance transitions Corr log bits bits
1 35.3 — 154 0.97 0.84 (39) 1.606 1.785
2 152.5 ~p < 0.001 417 0.96 0.79 (51) 1.940 1.980
3 134.8 p < 0.001 409 0.94 0.71 (43) 1.846 2.115
4 97.3 p < 0.001 348 0.95 0.75 (49) 1.838 ©1.978
5 82.1 p < 0.005 270 0.93 0.79 (43) 2.003 2.197
6 84.5 p < 0.005 431 0.97 0.84 (57) 2.282 2.509
7 178.8 p < 0.001 429 0.96 0.82 (48) 1.885 2.104
8 782 p < 0.005 275 0.94 0.72 (43) 2.002 2.183
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Figure 3. Scatter plot of observed point-to-point
transition frequencies versus those expected based
on stratified random sampling.

pected by assumption of random sampling.
The second, in Column 6, is a Pearson corre-
lation based on log transforms of both ex-
pected and observed frequencies, which cor-
rects for the skew in the marginal distribu-
tions of observed and expected frequencies.
As seen from Tables 1 and 2, though the strat-
ified random sampling model used to calcu-
late the expected frequencies provides an ap-
proximation of the empirical first-order tran-
sition pattern there are noticeable deviations
from the expected values (Figure 3).

Identification of Statistical Dependencies

We assessed the direction of the actual de-
viations, on a subject-by-subject basis, by
transforming their observed and expected
first-order transition matrices of p(i to j) into
a corresponding conditional probability ma-
trix of p(i,j), and we calculated the condi-
tional information, H, (Appendix Equation
3), for each (Table 2). These calculations con-
sistently indicated that the observed H, of the
transition matrices were lower in magnitude,
and thus more statistically dependent, than
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the expected matrices (two-tailed sign test, p
< 0.008). This contrast shows that the direc-
tion of the statistically significant, overall
chi-square tests is toward more statistical
dependency than that predicted by the strati-
fied random sampling model.

To isolate terms in the chi-square calcula-
tions that contribute to the overall deviation,
we treated each term as a separate test with
one degree of freedom. For example, in Table
1, after the collapsing of the cells with small
expected frequencies to a single cell, there re-
mained 21 separate terms for the chi-square
calculation. Thus, there are 21 separate tests,
20 of which may be treated as independent. If
one adjusts the probability of the Type II
error of omission for each test so that the en-
tire analysis on each subject is kept within
the customary 0.05, the separate terms may
be tested for deviation from stratified
random sampling.

The results of this procedure are shown in
Table 1, in which underlined text is used to
indicate the two transitions that reliably con-
tribute to the overall statistical dependency
in the scanning. Similar analyses were car-
ried out on the transition patterns for the
other seven subjects in the experiment
(Figure 4). In essence, the analysis applies a
filter to the transition patterns to identify
transitions genuinely indicating statistically
dependent ‘“linkage” between information
presented at a pair of points of interest. As
shown in Figure 4, the transitions exhibiting
statistically dependent associations do not
necessarily correspond to those with the
most frequent transitions. The left-hand
panel of Figure 4 shows each subject’s transi-
tion pattern among points of interest on the
CDTI display. According to the legend, thick-
ness of the arrows connecting pairs of points
on these panels codes the relative frequency
of each transition. Corresponding right-hand
panels identify only those transitions that ex-
hibit true statistical dependencies for each
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Figure 4. Scanning patterns from each of 8 pilots who used the CDTI to estimate future relative position of
two aircraft.
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respective subject. The thickness of the
arrows in the right-hand panels has no spe-
cial significance.

The particular transitions for which the
observed transition frequencies deviated
from those expected for stratified random
sampling were similar across all pilots. This
was shown by nonparametric Friedman
ANOVA of the rank ordering of these devia-
tions; Kendall W = 0.524, chi(r)? = 171.91, df
= 41, p < 0.001. Most deviations were asso-
ciated with transitions involving the aircraft
predictors. The relatively small Kendall W
reflects the fact that most of the agreement
between subjects was confined to the few
larger deviations in which the observed fre-
quencies of transition exceeded the expected
frequencies.

If the idertified scanning dependencies
were caused by closed-loop control, evidence
for it could be found in the correlation be-
tween fixation duration and preceding sac-
cade size. One view of this kind of control
would be that information from a subsequent
fixation position acquired during the current
fixation influences the duration of that next
fixation. If it were based on the greater pe-
ripheral preprocessing possible when the po-
sitions of subsequent points of interest fall
within the functional field of view of the pre-
ceding fixations, this kind of interaction
could produce a positive correlation between
fixation duration and preceding saccade”
length. The closer a subsequent fixation is to
the previous fixation, the more preprocessing
would be possible. Accordingly, the fixation
duration of the subsequent fixation may be
reduced, since the information it can provide
has already been partially processed (Ka-
poula, 1983).

We examined this aspect of our data sub-
ject by subject, and found no evidence for
this kind of correlation. In fact, in our task
there appeared to be a slight reverse effect.
All of the subjects showed statistically signif-
icant negative correlations between previous
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saccade size and fixation duration. They
ranged from —0.14 to —0.54 (p < 0.05 or
better). Inspection of the scatter plots under-
lying these correlations and use of log trans-
forms to correct for positive skew of fixation
duration confirm these negative correlations.
Breakdown of this analysis by update period,
to check for changes during the course of an
encounter, showed that the generally linear
decrease of fixation as a function of preceding
saccade size was present throughout the en-
counter. Figure 5 summarizes the decrease in
mean fixation duration as a function of the
increase in size of preceding saccade.

DISCUSSION

The original hypothesis in this experiment
was that either repetitive open-loop or
closed-loop information-gathering strategies
would introduce statistical dependencies
into the subjects’ information-seeking scan-
ning patterns. This hypothesis was con-
firmed. However, the results presented here
also show that the deviation from a stratified
random sampling model, though consistently
in the direction of greater determinism and
dependency, was small in magnitude (see
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Figure 5. Summary of the decrease in mean fixation
duration as a function of the size of the preceding
saccade.
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Table 2). What could account for the general
randomness in the scanning?

Causes of Statistical Independence
in Scanning

To the extent that the selection of the next
fixation point is statistically independent of
the previous fixation and describable as
stratified random sampling, the results of
this experiment are consistent with visual
sampling models that assume that the search
for information is autonomous of subsequent
processes that use it (Didday and Arbib,
1972; Smallwood, 1967). These types of
models represent the eye as a “buffer filler”
that is not under the tight control of the
higher-order information processing that un-
derlies interpretation of visual information
(Bouma and de Voogd, 1974; Kolers, 1976).
Models like this could be likened to a real-
time data acquisition system, such as DEC’s
RT11, which uses a direct memory access de-
vice to service an input buffer.

However, the collection of the eye move-
ment data over time and across different en-
counter conditions raises the possibility that
the apparent randomness of the data could
arise as an artifact of the mixing of a variety
of scanning strategies, making the transition
pattern nonstationary. In a nonstationary
process, genuine but changing statistical de-
pendencies could be obscured by mixing in
the overall analysis (W. F. Clement, personal
communication, August 1981).

The evidence for such mixing is weak,
since, with the exception of the percentage of
time viewing LOM, the sampling probabili-
ties remained relatively constant throughout
the session. The change in the percentage of
time viewing point LOM was probably an ar-
tifact created by LOM'’s being within 1 deg of
visual angle of the intersection of the flight
paths. This intersection was a point between

the ends of the predictors and appeared to be
a point fixated by the pilots during the en- -

counter. As each encounter progressed, the
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pilots’ fixations between the ends of the pre-
dictors, which were included in the BIN clas-
sification, moved closer to LOM. Thus, due to
inevitable uncertainty in classification of fix-
ations towards the end of each encounter, the
percentage of viewing time assigned to LOM
increased, and the percentage assigned to
BIN decreased.

A more likely cause than the mixing of scan
strategies for a stratified random sampling

_characteristic of the data would be the mea-

sures taken to ensure stationarity in the
scanning. Such measures may have had the
paradoxical effect of encouraging random
sampling. In this view, the efforts to over-
train the pilots to asymptotic, near-perfect
performance on the in-front/behind discrimi-
nation may have caused them to develop
such efficient decision strategies that they
were able to monitor several aspects of the
encounter without consciously switching
their attention.

Under these conditions, the display serves
the pilot as a kind of random access memory,
allowing immediate acquisition of any fact
required for further analysis without the
need for search (Groner and Groner, 1982).
This is a situation describing the well-trained
pilot, who is able simultaneously to monitor
and control several different aircraft systems.
Less well-trained pilots have to shift their at-
tention consciously from one system to an-
other, from one display to another, and may
exhibit considerably more statistical depen-
dency in their scanning eye movements (De-
Maio, Parkinson, Leshowitz, Crosby, and
Thorpe, 1976). Indeed, as has been suggested
before (Ellis and Stark, 1981; Tole, Stephens,
Vivaudou, Harris, and Ephrath, 1982), any-
thing that interferes with a pilot’s ability to
monitor different dynamic systems, such as
stress or workload, might increase the statis-
tical dependency in his scanning eye move-
ments. Thus, measures of statistical depen-
dencies in scanning eye movements may pro-
vide useful indices of workload or stress. The
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conclusion to be drawn is that statistical de-
pendencies, whatever their practical uses,
are detectable and need explanation.

Reasons for Statistical Dependencies
in Scanning

In general, two causes of statistical depen-
dencies may be distinguished: closed-loop
control and open-loop control. In closed-loop
control, information acquired during fixation
is used to direct the subsequent saccade. In
open-loop control, direction of the next sac-
cade is due to information processing inde-
pendent of the current visual information in
the visual field.

In visual tasks that explicitly benefit from
peripheral preprocessing, evidence has been
presented, for example, by Kapoula (1983), to
show that fixation durations on subsequent
points of interest can be influenced by their
proximity to previous fixations. This kind of
evidence clearly suggests that sequences of
fixations are influenced by closed-loop con-
trol processes. This result is also in accord
with classical observations that the peak ve-
locity of a saccade is proportional to saccadic
amplitude (Bahill and Stark, 1979), the so-
called main sequence law. In that case, the
controller driving the eye must “know’’ the
coordinates of the end of the saccade before it
generates the move commands to the
muscles.

Our fixation data, however, do not exhibit
the same relationship between fixation dura-
tion and previous saccade size that was of-
fered by Kapoula as evidence for the direc-
ting role of peripheral preprocessing, a role
that illustrates closed-loop control. Our sub-
jects’ task, however, was quite different from
that used by Kapoula, and this difference
may explain the different results. In her ex-
periment, the subjects made a fine visual dis-
crimination requiring high-resolution foveal
vision. In this task, peripheral preprocessing
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of the target of the next fixation could be rea-
sonably expected to reduce the next fixation’s
duration, since some aspects of the target’s
identity would be known before the next fixa-
tion is made.

In our experiment, subjects were required
to judge relative positions of two targets and
would benefit from simultaneous viewing of
both. Accordingly, the longer fixation dura-
tions we found to be associated with the
shorter preceding saccades could reflect this
simultaneous processing of both targets’ po-
sitions. When the targets are close together
and both can be included in the functional
field of view, fixations are longer, allowing
processing of the positions of both targets.
The fixations to the more widely separated
parts of the displays would not necessarily
allow simultaneous processings of the cur-
rent and previously viewed target’s positions.
Thus, these fixations would be of shorter du-
ration compared with those preceded by
shorter saccades. Accordingly, despite the
differences from Kapoula’s results, our re-
sults are consistent with a model in which
peripheral information influences fixation
duration, thereby implying closed-loop con-
trol.

An alternative cause of statistical depen-
dency could be called open-loop control. An
example might be the left-to-right scanning
used in reading English text. This asymmetry
is not a consequence of the specific informa-
tion present in the text (though the specific
fixations may be), but only of the habitual
lexicographic layout. Such open-loop scan-
ning is not necessarily under the control of
ongoing information processes; it may be
simply filling an input buffer. However,
open-loop control of scanning need not be
based on scanning habits. Internal informa-
tion processing, in which the processes them-
selves drive the subjects’ sequence of fixa-
tions, could control the scanning. An example



STATISTICAL DEPENDENCY IN SCANNING

of this might be movements of the eye to an-
swer ‘“visual questions” raised by previous
viewing (Hochberg and Brooks, 1978), or
scanpaths hypothetically linked to the
memory trace of an object (Noton and Stark,
1971) or to cognitive models (Ellis and. Stark,
1978, 1979).

To differentiate between open- and close-
loop control, one would have to determine
the effect of the spatial location of the points
of interest on statistical dependencies identi-
fied in the scanning. If it could be shown that
the closer points of interest in our experiment
were more likely to be the end points of sta-
tistically dependent transitions, one could
then argue that the dependencies were due to
peripheral preprocessing that had taken
place during the preceding fixation. If in-
volvement of a point of interest in a depen-
dent transition were not related to its prox-
imity to another point, the dependency could
then be attributed to open-loop control. The
data from the present experiment do not pro-
vide sufficient numbers of true dependencies
for this analysis.

The principal conclusion to be drawn from
this experiment is that random sampling
models of visual information seeking in dy-
namic visual environments, though very
good approximations, do not completely ac-
count for the pattern of information seeking
we observed. As emphasized by the Friedman
ANOVA, which shows consistent deviations
from stratified random sampling, a model in-
corporating some determinism is required.

Furthermore, the above analysis under-
scores an important caveat for those wishing
to interpret scanning patterns: the proba-
bility of sampling points of interest in a pat-
tern must first be considered before transi-
tions of fixations among them can be inter-
preted as evidence of ‘‘linkage’’ of the
information present at the points (Senders,
1966). Variation in these sampling probabili-
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ties can result in scanning patterns that, be-
cause of frequent transitions between pop-
ular points of intérest, appear to exhibit sta-
tistical dependencies, but in fact do not. A
technique like the one described in this paper
is necessary to identify those instances of true
statistical dependency actually in the eye
movement data.

APPENDIX

To understand what is meant by statistical
dependency in visual scanning, it is helpful to
consider three alternative modes of scanning
among points of interest (Figure 6).

The random case in Figure 6 illustrates
completely unconstrained scanning among
three points of interest. The stratified
random case shows the effects of scanning
when the sole constraints are provided by the
differential probabilities of viewing each
point of interest, p(i) in the text. In this case,
the observed pattern of transition is exactly
that which could be calculated from the p(i)
by Equation 1. The statistically dependent
case, which shares the same p(i) as the strati-
fied random case, illustrates how the ob-
served pattern of transitions may deviate
from that calculable from the p(i). Note that
the larger deviations between the observed
transitions and those consistent with strati-
fied random sampling are not necessarily as-
sociated with the most frequent transitions.

The description of these different modes of
scanning first requires the distinction of
three types of probabilities:

(1) p(d), p(j), or p(l), the simple probabilities of
viewing points of interest i, j, or 1 respec-
tively. Although this probability may be de-
fined by the number of times a point of in-
terest is visited, in this paper it is defined by
the percentage of time spent on each partic-
ular point. The conclusions of this paper,
however, are insensitive to the choice of defi-
nition.

(2) p( to j), the probability of a transition be-
tween distinct points of interest i and j, con-
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ILLUSTRATIVE PATTERNS OF TRANSITIONS
AMONG THREE
POINTS OF INTEREST

FREQUENCY OF
TRANSITION TO

FREQUENCY OF
TRANSITION FROM

PROBABILITY
OF VIEWING
RANDOM STRATIFIED RANDOM
18 18 12 36
ia 12
18 , 5

STATISTICALLY

DEPENDENT
17 38
1

Figure 6. Examples of different typeés of scanning among three points of interest.
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ditioned only on the assumption that unob-
served transitions occur from each point to
itself (i.e., the link value)

3) pGi.j), the conditional probablhty of viewing
point of interest j given previous viewing of
point of interest i.

The latter two probabilities, p(i to j) and
p(i,j), may be related to each other by p(i,j) =
[N/n(i)] p(i to j), where N is the total number
of transitions among all points of interest and
n(i) is the number of exits from a particular
point i.

These three probabilities allow the de-
scription of the three modes of scanning
among points of interest in order to sample
visual information. Visual sampling of points
of interest may be completely random, strati-
fied random, or statistically dependent. All
sampling is assumed to be done with replace-
ment. In the random case, each point is
viewed with equal probability, and, as a con-
sequence, all transition probabilities be-
tween pairs of points are equal. In the strati-
fied random case, the points of interest may
be viewed with different probabilities. This
distribution may be dependent on the partic-
ular task the viewer must undertake, but now
only the transitions to and from particular
pairs of points need be equal.

Note that, by chance alone, there are many
transitions between the more probable fixa-
tion points of interest. This case may be de-
scribed alternatively as a zero-order Markov
process, and thus the probability of fixating
any point of interest is statistically indepen-
dent of fixation on the preceding point. Ac-
cordingly, p(i to j) or p(i,j) are calculable
from p(i) and p(j) (Senders, 1966). Only in a
statistically dependent case (bottom Figure
6) do some of the transition frequencies illus-
trate the deviations from statistical indepen-
dence that indicate statistical dependencies
characteristic of a first order or higher
Markov process. In this case, p(i to j) or P(i,j)
are not calculable from p(i). It is also note-
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worthy, in this example, that the illustrated
dependencies are not necessarily the most
frequent transitions.

In the random case, sampling among the
points of interest is completely uncon-
strained. In the stratified random sampling
case, however, a differential probability of
viewing the various points of interest leads to
a constraint on the scanning sequences,
which may produce the impression of se-
quential scanning. Under these conditions,
transitions between high probability points
of interest are likely due simply to the zero-
order probability of viewing the respective
points. Accordingly, any claim for statistical
dependency in the transition patterns among
points of interest must first show that the ex-
tent of the periodicity exceeds that which
would be produced by the zero-order proba-
bilities.

In order to detect truly statistically depen-
dent transitions in scanning eye movement
data, we have adapted an equation cited by
Senders et al. (1966) for descriEing stratified
random sampling. They noted that the joint
assumption of (1) statistical independence of
the transitions and (2) the existence of unob-
served transitions from each point of interest
to itself provides a means of calculating p(i to
j)—the probability of a transition between
any two distinct points of interest, i,j—pro-
vided that p(i), p(j), the zero-order probabili-
ties of the two points are known.

piiton = —RRO_ ;)
1 - >pQ1y
=1

The denominator of this expression corre-
sponds to the probability of all observable
transitions between distinct points of in-
terest. (Senders et al., 1966). Most impor-
tantly, Equation 1 provides a way to calcu-
late expected transition frequencies, £, (i to j),
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between points of interest, based solely on
the expected transition probabilities and the
total number of observed transitions, N.

f. (i to j) = Np, @ to j) ()

These calculated expected frequencies may
then be compared by chi-square tests with
the observed transition frequencies, in order
to assess the adequacy of stratified random
sampling as a description of the data. The
number of degrees of freedom in these chi-
square tests is n(n—2) — 1, if n is the
number of points of interest. Two degrees of
freedom were lost at each point of interest,
because we were unable to observe transi-
tions from a point to itself, and the nature of
transitions requires that the number of visits
to each point of interest equals the number of
exits. This latter property was only approxi-
mately true of the data because of interrup-
tions in recording of eye position when the
eye monitor lost track of the eye.

A chi-square test comparing observed and
expected transition frequencies that indi-
cates a deviation is, however, a nondirec-
tional test. The observed distribution could
either be more uniform than that expected,
so that the transitions in any row of the first-
order matrix are more equal to each other
than predicted by stratified sampling, or be
less uniform than expected. The former de-
viation (more uniform) would be in the direc-
tion of less than expected statistical depen-
dency. Conversely, if the observed distribu-
tion in any row of the transition matrix was
less uniform, with larger maxima and
smaller minima, such a deviation would be
in the direction of more statistical depen-
dency. The most statistically dependent case
would be that with only one type of transi-
tion occurring from each point of interest.
Consequently, differentiating between these
two types of deviations requires a measure of
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the amount of statistical dependency in a
transition matrix. Such a measure would
allow comparison of the amount of statistical
dependency in the observed transition ma-
trix with that in the transition matrix ex-
pected from stratified random sampling.

The amount of statistical dependency in
any transition matrix of p(i to j) may be mea-
sured by transforming it into a conditional
probability matrix of p(i,j). The total condi-
tional “information’’ (Brillouin, 1962) in the
matrix, H,, can then be calculated.

i=1 j=1

This value provides a measure of statistical
dependency in the spatial pattern of fixations
represented by the transition matrix, and
may be used to compare one matrix with an-
other. It has a maximum when the transi-
tions from each point of interest are equally
distributed to all other points. It has a min-
imum when the transitions from each point
all uniquely go to a single point. Thus, the
larger the H,, the less the statistical depen-
dency in scanning (Huff, 1966). For purposes
of comparing the uncertainty in the spatial
pattern of scanning, this measure is probably
better than an alternativé proposed by Tole
et al. (1982), which explicitly combines fixa-
tion rate with uncertainty of scanning, so
that the resulting “entropy of the scanpath”
does not uniquely reflect the uncertainty in
the spatial pattern of fixations.

This measure of statistical dependency is,
however, significantly affected by the zero-
order probabilities. For example, if only a
few points of interest dominate the fixation
distribution, there may be a small H, but no
genuine statistical dependency. Accordingly,
like other statistics, sampling distributions
for it must be determined so that its use may
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be extended to comparisons of distributions
with different zero-order probabilities.
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